1.

論文

論文
Zhao, Juanjuan ; Okamoto, Yasuo ; Asano, Yuya ; Ishimaru, Kazuhiro ; Aki, Sho ; Yoshioka, Kazuaki ; Takuwa, Noriko ; Wada, Takashi ; Inagaki, Yutaka ; Takahashi, Chiaki ; Nishiuchi, Takumi ; Takuwa, Yoh ; 安藝, 翔 ; 吉岡, 和晃 ; 多久和, 典子 ; 和田, 隆志 ; 髙橋, 智聡 ; 西内, 巧 ; 多久和, 陽
出版情報: PLoS ONE.  13  pp.e0197604-,  2018-05-21.  Public Library of Science
URL: http://hdl.handle.net/2297/00053881
概要: 金沢大学医薬保健研究域医学系<br />Idiopathic pulmonary fibrosis is a devastating disease with poor prognosis. The pathogenic role of t he lysophospholipid mediator sphingosine-1-phosphate and its receptor S1PR2 in lung fibrosis is unknown. We show here that genetic deletion of S1pr2 strikingly attenuated lung fibrosis induced by repeated injections of bleomycin in mice. We observed by using S1pr2 LacZ/+ mice that S1PR2 was expressed in alveolar macrophages, vascular endothelial cells and alveolar epithelial cells in the lung and that S1PR2-expressing cells accumulated in the fibrotic legions. Bone marrow chimera experiments suggested that S1PR2 in bone marrow–derived cells contributes to the development of lung fibrosis. Depletion of macrophages greatly attenuated lung fibrosis. Bleomycin administration stimulated the mRNA expression of the profibrotic cytokines IL-13 and IL-4 and the M2 markers including arginase 1, Fizz1/Retnla, Ccl17 and Ccl24 in cells collected from broncho-alveolar lavage fluids (BALF), and S1pr2 deletion markedly diminished the stimulated expression of these genes. BALF cells from bleomycin–administered wild-type mice showed a marked increase in phosphorylation of STAT6, a transcription factor which is activated downstream of IL-13, compared with saline–administered wild-type mice. Interestingly, in bleomycin–adminis-tered S1pr2 -/- mice, STAT6 phosphorylation in BALF cells was substantially diminished compared with wild-type mice. Finally, pharmacological S1PR2 blockade in S1pr2 +/+ mice alleviated bleomycin–induced lung fibrosis. Thus, S1PR2 facilitates lung fibrosis through the mechanisms involving augmentation of IL-13 expression and its signaling in BALF cells, and represents a novel target for treating lung fibrosis. © 2018 Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 続きを見る
2.

論文

論文
Pham, Hoa Q. ; Yoshioka, Kazuaki ; Mohri, Hiromi ; Nakata, Hiroki ; Aki, Sho ; Ishimaru, Kazuhiro ; Takuwa, Noriko ; Takuwa, Yoh ; 吉岡, 和晃 ; 仲田, 浩規 ; 安藝, 翔 ; 多久和, 典子 ; 多久和, 陽
出版情報: Genes Cells.  23  pp.670-687,  2018-08.  John Wiley & Sons
URL: http://hdl.handle.net/2297/00053882
概要: 金沢大学医薬保健研究域医学系<br />Phosphatidylinositol 3-phosphate (PI(3)P) is the predominant phosphoinositide species in early endos omes and autophagosomes, in which PI(3)P dictates traffic of these organelles. Phosphoinositide levels are tightly regulated by lipid-kinases and -phosphatases; however, a phosphatase that converts PI(3)P back to phosphatidylinositol in the endosomal and autophagosomal compartments is not fully understood. We investigated the subcellular distribution and functions of myotubularin-related protein-4 (MTMR4), which is distinct among other MTMRs in that it possesses a PI(3)P-binding FYVE domain, in lung alveolar epithelium-derived A549 cells. MTMR4 was localized mainly in late endosomes and autophagosomes. MTMR4 knockdown markedly suppressed the motility, fusion, and fission of PI(3)P-enriched structures, resulting in decreases in late endosomes, autophagosomes, and lysosomes, and enlargement of PI(3)P-enriched early and late endosomes. In amino acid- and serum-starved cells, MTMR4 knockdown decreased both autophagosomes and autolysosomes and markedly increased PI(3)P-containing autophagosomes and late endosomes, suggesting that the fusion with lysosomes of autophagosomes and late endosomes might be impaired. Notably, MTMR4 knockdown inhibited the nuclear translocation of starvation stress responsive transcription factor-EB (TFEB) with reduced expression of lysosome-related genes in starved cells. These findings indicate that MTMR4 is essential for the integrity of endocytic and autophagic pathways. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.<br />Embargo Period 12 months 続きを見る
3.

論文

論文
Aung, Khin Thuzar ; Yoshioka, Kazuaki ; Aki, Sho ; Ishimaru, Kazuhiro ; Takuwa, Noriko ; Takuwa, Yoh ; 吉岡, 和晃 ; 安藝, 翔 ; 多久和, 典子 ; 多久和, 陽
出版情報: Journal of Physiological Sciences.  69  pp.263-280,  2019-03-01.  Physiological Society of Japan 日本生理学会 / Springer Nature
URL: http://hdl.handle.net/2297/00053883
概要: 金沢大学医薬保健研究域医学系<br />Pinocytosis is an important fundamental cellular process that is used by the cell to transport fluid and solutes. Phosphoinositide 3-kinases (PI3Ks) regulate a diverse array of dynamic membrane events. However, it is not well-understood which PI3K isoforms are involved in specific mechanisms of pinocytosis. We performed knockdown studies of endogenous PI3K isoforms and clathrin heavy chain (CHC) mediated by small interfering RNA (siRNA). The results demonstrated that the class II PI3K PI3K-C2α and PI3K-C2β, but not the class I or III PI3K, were required for pinocytosis, based on an evaluation of fluorescein-5-isothiocyanate (FITC)–dextran uptake in endothelial cells. Pinocytosis was partially dependent on both clathrin and dynamin, and both PI3K-C2α and PI3K-C2β were required for clathrin-mediated—but not clathrin-non-mediated—FITC-dextran uptake at the step leading up to its delivery to early endosomes. Both PI3K-C2α and PI3K-C2β were co-localized with clathrin-coated pits and vesicles. However, PI3K-C2β, but not PI3K-C2α, was highly co-localized with actin filament-associated clathrin-coated structures and required for actin filament formation at the clathrin-coated structures. These results indicate that PI3K-C2α and PI3K-C2β play differential, indispensable roles in clathrin-mediated pinocytosis. © 2018, The Physiological Society of Japan and Springer Japan KK, part of Springer Nature.<br />Embargo Period 12 months 続きを見る
4.

論文

論文
Sarker, Md Azadul Kabir ; Aki, Sho ; Yoshioka, Kazuaki ; Kuno, Kouji ; Okamoto, Yasuo ; Ishimaru, Kazuhiro ; Takuwa, Noriko ; Takuwa, Yoh ; 安藝, 翔 ; 吉岡, 和晃 ; 多久和, 典子 ; 多久和, 陽
出版情報: Endocrinology.  160  pp.235-248,  2019-01-01.  Endocrine Society / Oxford University Press
URL: http://hdl.handle.net/2297/00053884
概要: 金沢大学医薬保健研究域医学系<br />Class II phosphoinositide 3-kinases (PI3Ks), PI3K-C2α and PI3K-C2β, are highly homologous and distin ct from class I and class III PI3Ks in catalytic products and domain structures. In contrast to class I and class III PI3Ks, physiological roles of PI3K-C2α and PI3K-C2β are not fully understood. Because we previously demonstrated that PI3K-C2α is involved in vascular smooth muscle contraction, we studied the phenotypes of smooth muscle-specific knockout (KO) mice of PI3K-C2α and PI3K-C2β. The pup numbers born from single PI3K-C2α-KO and single PI3K-C2β-KO mothers were similar to those of control mothers, but those from double KO (DKO) mothers were smaller compared with control mice. However, the number of intrauterine fetuses in pregnant DKO mothers was similar to that in control mice. Both spontaneous and oxytocin-induced contraction of isolated uterine smooth muscle (USM) strips was diminished in DKO mice but not in either of the single KO mice, compared with control mice. Furthermore, contraction of USM of DKO mice was less sensitive to a Rho kinase inhibitor. Mechanistically, the extent of oxytocin-induced myosin light chain phosphorylation was greatly reduced in USM from DKO mice compared with control mice. The oxytocin-induced rise in the intracellular Ca2+ concentration in USM was similar in DKO and control mice. However, Rho activation in the intracellular compartment was substantially attenuated in DKO mice compared with control mice, as evaluated by fluorescence resonance energy transfer imaging technique. These data indicate that both PI3K-C2α and PI3K-C2β are required for normal USM contraction and parturition mainly through their involvement in Rho activation.<br />Embargo Period 12 months 続きを見る
5.

論文

論文
Qia, Xun ; Okamoto, Yasuo ; Murakawa, Tomomi ; Wang, Fei ; Oyama, Osamu ; Ohkawa, Ryunosuke ; Yoshioka, Kazuaki ; Du, Wa ; Sugimoto, Naotoshi ; Yatomi, Yutaka ; Takuwa, Noriko ; Takuwa, Yoh
出版情報: European Journal of Pharmacology.  634  pp.121-131,  2010-05-01.  Elsevier BV
URL: http://hdl.handle.net/2297/23922
概要: 金沢大学医薬保健研究域医学系<br />Therapeutic angiogenesis is a promising strategy for treating ischemia. The lysophospholipid mediato r sphingosine-1-phosphate (S1P) acts on vascular endothelial cells to stimulate migration and tube formation, and plays the critical role in developmental angiogenesis. We developed poly(lactic-co-glycolic-acid) (PLGA)-based S1P-containing microparticles (PLGA-S1P), which are biodegradable and continuously release S1P, and studied the effects of PLGA-S1P on neovascularization in murine ischemic hindlimbs. Intramuscular injections of PLGA-S1P stimulated blood flow in C57BL/6 mice dose-dependently, with repeated administrations at a 3-day interval, rather than a single bolus or 6-day interval, over 28. days conferring the optimal stimulating effect. In Balb/c mice that exhibit limb necrosis and dysfunction due to retarded blood flow recovery, injections of PLGA-S1P stimulated blood flow with alleviation of limb necrosis and dysfunction. PLGA-S1P alone did not induce edema in ischemic limbs, and rather blocked vascular endothelial growth factor-induced edema. PLGA-S1P not only increased the microvessel densities in ischemic muscle, but promoted coverage of vessels with smooth muscle cells and pericytes, thus stabilizing vessels. PLGA-S1P stimulated Akt and ERK with increased phosphorylation of endothelial nitric oxide synthase in ischemic muscle. The effects of the nitric oxide synthase inhibitor, Nω-nitro-l-arginine methylester, showed that PLGA-S1P-induced blood flow stimulation was partially dependent on nitric oxide. Injections of PLGA-S1P also increased the expression of angiogenic factors and the recruitment of CD45-, CD11b- and Gr-1-positive myeloid cells, which are implicated in post-ischemic angiogenesis, into ischemic muscle. These results indicate that PLGA-based, sustained local delivery of S1P is a potentially useful therapeutic modality for stimulating post-ischemic angiogenesis. © 2010 Elsevier B.V. 続きを見る
6.

論文

論文
Du, Wa ; Takuwa, Noriko ; Yoshioka, Kazuaki ; Okamoto, Yasuo ; Gonda, Koichi ; Sugihara, Kazushi ; Fukamizu, Akiyoshi ; Asano, Masahide ; Takuwa, Yoh
出版情報: Cancer Research.  70  pp.772-781,  2010-01-15.  American Association for Cancer Research
URL: http://hdl.handle.net/2297/21765
概要: 金沢大学医薬保健研究域医学系<br />Sphingosine-1-phosphate (S1P) has been implicated in tumor angiogenesis by acting through the Gi-cou pled chemotactic receptor S1P1. Here, we report that the distinct receptor S1P2 is responsible for mediating the G12/13/Rho-dependent inhibitory effects of S1P on Akt, Rac, and cell migration, thereby negatively regulating tumor angiogenesis and tumor growth. By using S1P2LacZ/+ mice, we found that S1P2 was expressed in both tumor and normal blood vessels in many organs, in both endothelial cells (EC) and vascular smooth muscle cells, as well as in tumor-associated, CD11b-positive bone marrow-derived cells (BMDC). Lewis lung carcinoma or B16 melanoma cells implanted in S1P2-deficient (S1P2-/-) mice displayed accelerated tumor growth and angiogenesis with enhanced association of vascular smooth muscle cells and pericytes. S1P2-/- ECs exhibited enhanced Rac activity, Akt phosphorylation, cell migration, proliferation, and tube formation in vitro. Coinjection of S1P2-/- ECs and tumor cells into wild-type mice also produced a relative enhancement of tumor growth and angiogenesis in vivo. S1P2-/- mice were also more efficient at recruiting CD11b-positive BMDCs into tumors compared with wild-type siblings. Bone marrow chimera experiments revealed that S1P2 acted in BMDCs to promote tumor growth and angiogenesis. Our results indicate that, in contrast to endothelial S1P1, which stimulates tumor angiogenesis, S1P 2 on ECs and BMDCs mediates a potent inhibition of tumor angiogenesis, suggesting a novel therapeutic tactic for anticancer treatment. ©2010 AACR. 続きを見る
7.

論文

論文
Wang, Fei ; Okamoto, Yasuo ; Inoki, Isao ; Yoshioka, Kazuaki ; Du, Wa ; Qi, Xun ; Takuwa, Noriko ; Gonda, Koichi ; Yamamoto, Yasuhiko ; Ohkawa, Ryunosuke ; Nishiuchi, Takumi ; Sugimoto, Naotoshi ; Yatomi, Yutaka ; Mitsumori, Kunitoshi ; Asano, Masahide ; Kinoshita, Makoto ; Takuwa, Yoh
出版情報: The journal of clinical investigation.  120  pp.3979-3995,  2010-11-01.  American Society for Clinical Investigation
URL: http://hdl.handle.net/2297/25352
概要: 金沢大学医薬保健研究域医学系<br />Sphingosine-1-phosphate (S1P) is a biologically active sphingolipid that has pleiotropic effects in a variety of cell types including ECs, SMCs, and macrophages, all of which are central to the development of atherosclerosis. It may therefore exert stimulatory and inhibitory effects on atherosclerosis. Here, we investigated the role of the S1P receptor S1PR2 in atherosclerosis by analyzing S1pr2–/– mice with an Apoe–/– background. S1PR2 was expressed in macrophages, ECs, and SMCs in atherosclerotic aortas. In S1pr2–/–Apoe–/– mice fed a high-cholesterol diet for 4 months, the area of the atherosclerotic plaque was markedly decreased, with reduced macrophage density, increased SMC density, increased eNOS phosphorylation, and downregulation of proinflammatory cytokines compared with S1pr2+/+Apoe–/– mice. Bone marrow chimera experiments indicated a major role for macrophage S1PR2 in atherogenesis. S1pr2–/–Apoe–/– macrophages showed diminished Rho/Rho kinase/NF-κB (ROCK/NF-κB) activity. Consequently, they also displayed reduced cytokine expression, reduced oxidized LDL uptake, and stimulated cholesterol efflux associated with decreased scavenger receptor expression and increased cholesterol efflux transporter expression. S1pr2–/–Apoe–/– ECs also showed reduced ROCK and NF-κB activities, with decreased MCP-1 expression and elevated eNOS phosphorylation. Pharmacologic S1PR2 blockade in S1pr2+/+Apoe–/– mice diminished the atherosclerotic plaque area in aortas and modified LDL accumulation in macrophages. We conclude therefore that S1PR2 plays a critical role in atherogenesis and may serve as a novel therapeutic target for atherosclerosis. 続きを見る
8.

論文

論文
Takuwa, Noriko ; Ohkura, Sei-Ichiro ; Takashima, Shin-ichiro ; Ohtani, Keisuke ; Okamoto, Yasuo ; Tanaka, Tamotsu ; Hirano, Kaoru ; Usui, Soichiro ; Wang, Fei ; Du, Wa ; Yoshioka, Kazuaki ; Banno, Yoshiko ; Sasaki, Motoko ; Ichi, Ikuyo ; Okamura, Miwa ; Sugimoto, Naotoshi ; Mizugishi, Kiyomi ; Nakanuma, Yasuni ; Ishii, Isao ; Takamura, Masayuki ; Kaneko, Shuichi ; Kojo, Shosuke ; Satouchi, Kiyoshi ; Mitumori, Kunitoshi ; Chun, Jerold ; Takuwa, Yoh
出版情報: Cardiovascular Research.  85  pp.484-493,  2010-02-01.  Oxford University Press (OUP)
URL: http://hdl.handle.net/2297/21766
概要: 金沢大学医薬保健研究域医学系<br />Aims Sphingosine kinase 1 (SPHK1), its product sphingosine-1-phosphate (S1P), and S1P receptor subty pes have been suggested to play protective roles for cardiomyocytes in animal models of ischaemic preconditioning and cardiac ischaemia/reperfusion injury. To get more insight into roles for SPHK1 in vivo, we have generated SPHK1-transgenic (TG) mice and analysed the cardiac phenotype.Methods and results SPHK1-TG mice overexpressed SPHK1 in diverse tissues, with a nearly 20-fold increase in enzymatic activity. The TG mice grew normally with normal blood chemistry, cell counts, heart rate, and blood pressure. Unexpectedly, TG mice with high but not low expression levels of SPHK1 developed progressive myocardial degeneration and fibrosis, with upregulation of embryonic genes, elevated RhoA and Rac1 activity, stimulation of Smad3 phosphorylation, and increased levels of oxidative stress markers. Treatment of juvenile TG mice with pitavastatin, an established inhibitor of the Rho family G proteins, or deletion of S1P3, a major myocardial S1P receptor subtype that couples to Rho GTPases and transactivates Smad signalling, both inhibited cardiac fibrosis with concomitant inhibition of SPHK1-dependent Smad-3 phosphorylation. In addition, the anti-oxidant N-2-mercaptopropyonylglycine, which reduces reactive oxygen species (ROS), also inhibited cardiac fibrosis. In in vivo ischaemia/reperfusion injury, the size of myocardial infarct was 30 decreased in SPHK1-TG mice compared with wild-type mice.Conclusion These results suggest that chronic activation of SPHK1-S1P signalling results in both pathological cardiac remodelling through ROS mediated by S1P3 and favourable cardioprotective effects. 続きを見る
9.

論文

論文
Takuwa, Yoh ; Ikeda, Hitoshi ; Okamoto, Yasuo ; Takuwa, Noriko ; Yoshioka, Kazuaki
出版情報: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids.  1831  pp.185-192,  2013-01-01.  Elsevier
URL: http://hdl.handle.net/2297/32827
概要: Fibrosis is a pathological process characterized by massive deposition of extracellular matrix (ECM) such as type I/III collagens and fibronectin that are secreted by an expanded pool of myofibroblasts, which are phenotypically altered fibroblasts with more contractile, proliferative, migratory and secretory activities. Fibrosis occurs in various organs including the lung, heart, liver and kidney, resulting in loss of normal tissue architecture and functions. Myofibroblasts could originate from multiple sources including tissue-resident fibroblasts, epithelial and endothelial cells through mechanisms of epithelial/endothelial-mesenchymal transition (EMT/EndMT), and bone marrow-derived circulating progenitors called fibrocytes. Emerging evidence in recent years shows that sphingosine-1-phosphate (S1P) acts on several types of target cells and is engaged in pro-fibrotic inflammatory process and fibrogenic process through multiple mechanisms, which include vascular permeability change, leukocyte infiltration, and migration, proliferation and myofibroblast differentiation of fibroblasts. Many of these S1P actions are receptor subtype-specific. In these actions, S1P has multiple cross-talks with other cytokines, particularly transforming growth factor-β (TGFβ), which plays a major role in fibrosis. The cross-talks include the regulation of S1P production through altered expression and activity of sphingosine kinases in fibrotic lesions, altered expression of S1P receptors, and S1P receptor-mediated transactivation of TGFβ signaling pathway. These cross-talks may give rise to a feed-forward, amplifying loop between S1P and TGFβ, and possibly with other cytokines in stimulating fibrogenesis. Another lysophospholipid mediator lysophosphatidic acid has also been recently implicated in fibrosis. The lysophospholipid signaling pathways represent novel, promising therapeutic targets for treating refractory fibrotic diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research. © 2012 Elsevier B.V. 続きを見る
10.

論文

論文
Yoshioka, Kazuaki ; Yoshida, Kotaro ; Cui, Hong ; Wakayama, Tomohiko ; Takuwa, Noriko ; Okamoto, Yasuo ; Du, Wa ; Qi, Xun ; Asanuma, Ken ; Sugihara, Kazushi ; Aki, Sho ; Miyazawa, Hidekazu ; Biswas, Kuntal ; Nagakura, Chisa ; Ueno, Masaya ; Iseki, Shoichi ; Schwartz, Robert J. ; Okamoto, Hiroshi ; Sasaki, Takehiko ; Matsui, Osamu ; Asano, Masahide ; Adams, Ralf H. ; Takakura, Nobuyuki ; Takuwa, Yoh
出版情報: Nature Medicine.  18  pp.1560-1569,  2012-10-01.  Nature Publishing Group
URL: http://hdl.handle.net/2297/32825
概要: The class II α-isoform of phosphatidylinositol 3-kinase (PI3K-C2α) is localized in endosomes, the trans-Golgi network an d clathrin-coated vesicles; however, its functional role is not well understood. Global or endothelial-cell-specific deficiency of PI3K-C2α resulted in embryonic lethality caused by defects in sprouting angiogenesis and vascular maturation. PI3K-C2α knockdown in endothelial cells resulted in a decrease in the number of PI3-phosphate-enriched endosomes, impaired endosomal trafficking, defective delivery of VE-cadherin to endothelial cell junctions and defective junction assembly. PI3K-C2α knockdown also impaired endothelial cell signaling, including vascular endothelial growth factor receptor internalization and endosomal RhoA activation. Together, the effects of PI3K-C2α knockdown led to defective endothelial cell migration, proliferation, tube formation and barrier integrity. Endothelial PI3K-C2α deficiency in vivo suppressed postischemic and tumor angiogenesis and diminished vascular barrier function with a greatly augmented susceptibility to anaphylaxis and a higher incidence of dissecting aortic aneurysm formation in response to angiotensin II infusion. Thus, PI3K-C2α has a crucial role in vascular formation and barrier integrity and represents a new therapeutic target for vascular disease.<br />In Press / 2013-03-18公開予定. 続きを見る