1.

論文

論文
Cui, Hong ; Okamoto, Yasuo ; Yoshioka, Kazuaki ; Du, Wa ; Takuwa, Noriko ; Zhang, Wei ; Asano, Masahide ; Shibamoto, Toshishige ; Takuwa, Yoh
出版情報: Journal of Allergy and Clinical Immunology.  132  pp.1205-1214,  2013-11-01.  Elsevier
URL: http://hdl.handle.net/2297/35640
概要: Background: Sphingosine-1-phosphate receptor 2 (S1P2) is expressed in vascular endothelial cells (ECs). However, the role of S1P2 in vascular barrier integrity and anaphylaxis is not well understood. Endothelial nitric oxide synthase (eNOS) generates nitric oxide to mediate vascular leakage, compromising survival in patients with anaphylaxis. We recently observed that endothelial S1P2 inhibits Akt, an activating kinase of eNOS. Objective: We tested the hypothesis that endothelial S1P2 might suppress eNOS, exerting a protective effect against endothelial barrier disruption and anaphylaxis. Methods: Mice deficient in S1P2 and eNOS underwent antigen challenge or platelet-activating factor (PAF) injection. Analyses were performed to examine vascular permeability and the underlying mechanisms. Results: S1pr2 deletion augmented vascular leakage and lethality after either antigen challenge or PAF injection. PAF injection induced activation of Akt and eNOS in the aortas and lungs of S1pr2-null mice, which were augmented compared with values seen in wild-type mice. Consistently, PAF-induced increase in cyclic guanosine monophosphate levels in the aorta was enhanced in S1pr-null mice. Genetic Nos3 deletion or pharmacologic eNOS blockade protected S1pr2-null mice from aggravation of barrier disruption after antigen challenge and PAF injection. ECs isolated from S1pr2-null mice exhibited greater stimulation of Akt and eNOS, with enhanced nitric oxide production in response to sphingosine-1-phosphate or PAF, compared with that seen in wild-type ECs. Moreover, S1pr2-deficient ECs showed more severe disassembly of adherens junctions with augmented S-nitrosylation of β-catenin in response to PAF, which was restored by pharmacologic eNOS blockade. Conclusion: S1P2 diminishes harmful robust eNOS stimulation and thereby attenuates vascular barrier disruption, suggesting potential usefulness of S1P2 agonists as novel therapeutic agents for anaphylaxis. © 2013 American Academy of Allergy, Asthma & Immunology. 続きを見る
2.

図書

図書
Takuwa, Yoh ; Sugimoto, Naotoshi ; Takuwa, Noriko ; Igarashi, Yasuyuki
出版情報: Sphingolipid Biology.  2006  pp.415-425,  2006-01-01.  Springer-Verlag
URL: http://hdl.handle.net/2297/39034
概要: Sphingosine-1-phosphate (S1P) exerts positive and negative effects on cell migration apparently in a cell-type-dependent manner. Our data suggest that the bimodal actions of S1P on cell migration is due to receptor subtype-specific positive and negative regulation of Rho family GTPase, Rac; S1P1 and S1P3 mediate Rac stimulation and chemotaxis whereas S1P2 mediates Rac inhibition and chemorepulsion. The stimulatory effects of S1P 1 and S1P3 on Rac and, subsequently on migration, are mediated by Gi. The inhibitory effect of SlP2 acts on G12/13 and Rho. S1P exerts inhibitory effects on some tumor cell migration and invasion via S1P2. S1P2 also mediates the inhibition of hematogenous metastasis. In contrast, exogenously expressed S1P1 has the reverse effect, it stimulates invasion and metastasis. S1P also exerts a similar bimodal action on vascular endothelial cells and, thereby, angiogenesis. The examples suggest that control of S1P receptor activity using a receptor subtype-specific agonist and antagonist may have beneficial effects on disorders, including cancer, and vascular diseases. © Springer-Verlag Tokyo 2006. All rights reserved.<br />[Book Chapter] Y. Hirabayashi, Y. Igarashi, A.H. Merrill, Jr. (eds.), Sphingolipid biology, Springer-Verlag, c2006 続きを見る
3.

論文

論文
Ishikura, Kazuhide ; Misu, Hirofumi ; Kumazaki, Masafumi ; Takayama, Hiroaki ; Matsuzawa-Nagata, Naoto ; Tajima, Natsumi ; Chikamoto, Keita ; Lan, Fei ; Ando, Hitoshi ; Ota, Tsuguhito ; Sakurai, Masaru ; Takeshita, Yumie ; Kato, Kenichiro ; Fujimura, Akio ; Miyamoto, Ken-ichi ; Saito, Yoshiro ; Kameo, Satomi ; Okamoto, Yasuo ; Takuwa, Yoh ; Takahashi, Kazuhiko ; Kidoya, Hiroyasu ; Takakura, Nobuyuki ; Kaneko, Shuichi ; Takamaura, Toshinari
出版情報: Diabetologia.  57  pp.1968-1976,  2014-09-01.  Springer Verlag
URL: http://hdl.handle.net/2297/39052
概要: Aims/hypothesis Impaired angiogenesis induced by vascular endothelial growth factor (VEGF) resistance is a hallmark of vascular complications in type 2 diabetes; however, its molecular mechanism is not fully understood. We have previously identified selenoprotein P (SeP, encoded by the SEPP1 gene in humans) as a liver-derived secretory protein that induces insulin resistance. Levels of serum SeP and hepatic expression of SEPP1 are elevated in type 2 diabetes. Here, we investigated the effects of SeP on VEGF signalling and angiogenesis. Methods We assessed the action of glucose on Sepp1 expression in cultured hepatocytes. We examined the actions of SeP on VEGF signalling and VEGF-induced angiogenesis in HUVECs. We assessed wound healing in mice with hepatic SeP overexpression or SeP deletion. The blood flow recovery after ischaemia was also examined by using hindlimb ischaemia model with Sepp1-heterozygous-knockout mice. Results Treatment with glucose increased gene expression and transcriptional activity for Sepp1 in H4IIEC hepatocytes. Physiological concentrations of SeP inhibited VEGF-stimulated cell proliferation, tubule formation and migration in HUVECs. SeP suppressed VEGF-induced reactive oxygen species (ROS) generation and phosphorylation of VEGF receptor 2 (VEGFR2) and extracellular signal-regulated kinase 1/2 (ERK1/2) in HUVECs. Wound closure was impaired in the mice overexpressing Sepp1, whereas it was improved in SeP-/-mice. SeP+/-mice showed an increase in blood flow recovery and vascular endothelial cells after hindlimb ischaemia. Conclusions/interpretation The hepatokine SeP may be a novel therapeutic target for impaired angiogenesis in type 2 diabetes. © 2014 Springer-Verlag Berlin Heidelberg. 続きを見る
4.

論文

論文
Aki, Sho ; Yoshioka, Kazuaki ; Okamoto, Yasuo ; Takuwa, Noriko ; Takuwa, Yoh
出版情報: Journal of Biological Chemistry.  290  pp.6086-6105,  2015-03-06.  American Society for Biochemistry and Molecular Biology
URL: http://hdl.handle.net/2297/41360
概要: We have recently demonstrated that the PI3K class II-α isoform (PI3K-C2α), which generates phosphatidylinositol 3-phosphate and phosphatidylinositol 3,4-bisphosphates, plays crucial roles in angiogenesis, by analyzing PI3K-C2α knock-out mice. The PI3K-C2α actions are mediated at least in part through its participation in the internalization of VEGF receptor-2 and sphingosine-1-phosphate receptor S1P1 and thereby their signaling on endosomes. TGFβ, which is also an essential angiogenic factor, signals via the serine/threonine kinase receptor complex to induce phosphorylation of Smad2 and Smad3 (Smad2/3). SARA (Smad anchor for receptor activation) protein, which is localized in early endosomes through its FYVE domain, is required for Smad2/3 signaling. In the present study, we showed that PI3K-C2α knockdown nearly completely abolished TGFβ1-induced phosphorylation and nuclear translocation of Smad2/3 in vascular endothelial cells (ECs). PI3K-C2α was necessary for TGFβ-induced increase in phosphatidylinositol 3,4-bisphosphates in the plasma membrane and TGFβ receptor internalization into the SARA-containing early endosomes, but not for phosphatidylinositol 3-phosphate enrichment or localization of SARA in the early endosomes. PI3K-C2α was also required for TGFβ receptor-mediated formation of SARA-Smad2/3 complex. Inhibition of dynamin, which is required for the clathrin-dependent receptor endocytosis, suppressed both TGFβ receptor internalization and Smad2/3 phosphorylation. TGFβ1 stimulated Smad-dependent VEGF-A expression, VEGF receptor-mediated EC migration, and capillary-like tube formation, which were all abolished by either PI3K-C2α knockdown or a dynamin inhibitor. Finally, TGFβ1-induced microvessel formation in Matrigel plugs was greatly attenuated in EC-specific PI3K-C2α-deleted mice. These observations indicate that PI3K-C2α plays the pivotal role in TGFβ receptor endocytosis and thereby Smad2/3 signaling, participating in angiogenic actions of TGFβ. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. 続きを見る
5.

論文

論文
Seok, Young Mi ; Choi, Young Whan ; Kim, Gyung-Duck ; Kim, Hye-Young ; Takuwa, Yoh ; Kim, In Kyeom
出版情報: Naunyn-Schmiedeberg's Archives of Pharmacology.  383  pp.45-56,  2011-01-01.  Springer-Verlag
URL: http://hdl.handle.net/2297/26530
概要: 金沢大学医薬保健研究域医学系<br />Gomisin A (GA) is an active ingredient of the fruits of Schisandra chinensis which has been wi dely used as a tonic in traditional Korean medicine. GA induces not only endothelium-dependent but also endothelium-independent relaxation in an isolated rat's thoracic aorta. This study was aimed to investigate the molecular mechanism by which GA induces endothelium-independent vasorelaxation. Rat aortic rings were denuded of endothelium, mounted in organ baths, and subjected to contraction or relaxation. We measured the amount of GTP RhoA as well as the phosphorylation level of 20 kDa myosin light chains (MLC20), myosin phosphatase-targeting subunit 1 (MYPT1) and protein kinase C-potentiated inhibitory protein for heterotrimeric myosin light-chain phosphatase of 17 kDa (CPI17). Pretreatment with GA dose-dependently inhibited the concentration-response curves in response to sodium fluoride (NaF) or thromboxane A2 agonist U46619, but not to phorbol 12, 13-dibutyrate (PDBu). GA decreased the activation of RhoA as well as the phosphorylation level of MLC20, MYPT1Thr855, and CPI17 induced by 8.0 mM NaF or 30 nM U46619. However, K+ channel blockers such as glibenclamide, apamin, or charybdotoxin did not affect the vascular relaxation induced by GA. Furthermore, GA did not affect the level of phosphorylation of CPI17 induced by PDBu. GA reduces vascular contraction through inhibition of RhoA/Rho-kinase pathway in endothelium-denuded rat aorta. © 2010 Springer-Verlag. 続きを見る
6.

論文

論文
Cui, Hong ; Okamoto, Yasuo ; Yoshioka, Kazuaki ; Du, Wa ; Takuwa, Noriko ; Zhang, Wei ; Asano, Masahide ; Shibamoto, Toshishige ; Takuwa, Yoh
出版情報: Journal of Allergy and Clinical Immunology.  132  pp.1205-1214,  2013-11-01.  Elsevier
URL: http://hdl.handle.net/2297/36259
概要: Background Sphingosine-1-phosphate receptor 2 (S1P2) is expressed in vascular endothelial cells (ECs). However, the role of S1P 2 in vascular barrier integrity and anaphylaxis is not well understood. Endothelial nitric oxide synthase (eNOS) generates nitric oxide to mediate vascular leakage, compromising survival in patients with anaphylaxis. We recently observed that endothelial S1P2 inhibits Akt, an activating kinase of eNOS. Objective We tested the hypothesis that endothelial S1P 2 might suppress eNOS, exerting a protective effect against endothelial barrier disruption and anaphylaxis. Methods Mice deficient in S1P2 and eNOS underwent antigen challenge or platelet-activating factor (PAF) injection. Analyses were performed to examine vascular permeability and the underlying mechanisms. Results S1pr2 deletion augmented vascular leakage and lethality after either antigen challenge or PAF injection. PAF injection induced activation of Akt and eNOS in the aortas and lungs of S1pr2-null mice, which were augmented compared with values seen in wild-type mice. Consistently, PAF-induced increase in cyclic guanosine monophosphate levels in the aorta was enhanced in S1pr-null mice. Genetic Nos3 deletion or pharmacologic eNOS blockade protected S1pr2-null mice from aggravation of barrier disruption after antigen challenge and PAF injection. ECs isolated from S1pr2-null mice exhibited greater stimulation of Akt and eNOS, with enhanced nitric oxide production in response to sphingosine-1-phosphate or PAF, compared with that seen in wild-type ECs. Moreover, S1pr2-deficient ECs showed more severe disassembly of adherens junctions with augmented S-nitrosylation of β-catenin in response to PAF, which was restored by pharmacologic eNOS blockade. Conclusion S1P2 diminishes harmful robust eNOS stimulation and thereby attenuates vascular barrier disruption, suggesting potential usefulness of S1P2 agonists as novel therapeutic agents for anaphylaxis. © 2013 American Academy of Allergy, Asthma & Immunology. 続きを見る
7.

論文

論文
Qia, Xun ; Okamoto, Yasuo ; Murakawa, Tomomi ; Wang, Fei ; Oyama, Osamu ; Ohkawa, Ryunosuke ; Yoshioka, Kazuaki ; Du, Wa ; Sugimoto, Naotoshi ; Yatomi, Yutaka ; Takuwa, Noriko ; Takuwa, Yoh
出版情報: European Journal of Pharmacology.  634  pp.121-131,  2010-05-01.  Elsevier BV
URL: http://hdl.handle.net/2297/23922
概要: 金沢大学医薬保健研究域医学系<br />Therapeutic angiogenesis is a promising strategy for treating ischemia. The lysophospholipid m ediator sphingosine-1-phosphate (S1P) acts on vascular endothelial cells to stimulate migration and tube formation, and plays the critical role in developmental angiogenesis. We developed poly(lactic-co-glycolic-acid) (PLGA)-based S1P-containing microparticles (PLGA-S1P), which are biodegradable and continuously release S1P, and studied the effects of PLGA-S1P on neovascularization in murine ischemic hindlimbs. Intramuscular injections of PLGA-S1P stimulated blood flow in C57BL/6 mice dose-dependently, with repeated administrations at a 3-day interval, rather than a single bolus or 6-day interval, over 28. days conferring the optimal stimulating effect. In Balb/c mice that exhibit limb necrosis and dysfunction due to retarded blood flow recovery, injections of PLGA-S1P stimulated blood flow with alleviation of limb necrosis and dysfunction. PLGA-S1P alone did not induce edema in ischemic limbs, and rather blocked vascular endothelial growth factor-induced edema. PLGA-S1P not only increased the microvessel densities in ischemic muscle, but promoted coverage of vessels with smooth muscle cells and pericytes, thus stabilizing vessels. PLGA-S1P stimulated Akt and ERK with increased phosphorylation of endothelial nitric oxide synthase in ischemic muscle. The effects of the nitric oxide synthase inhibitor, Nω-nitro-l-arginine methylester, showed that PLGA-S1P-induced blood flow stimulation was partially dependent on nitric oxide. Injections of PLGA-S1P also increased the expression of angiogenic factors and the recruitment of CD45-, CD11b- and Gr-1-positive myeloid cells, which are implicated in post-ischemic angiogenesis, into ischemic muscle. These results indicate that PLGA-based, sustained local delivery of S1P is a potentially useful therapeutic modality for stimulating post-ischemic angiogenesis. © 2010 Elsevier B.V. 続きを見る
8.

論文

論文
Takabatake, Masayoshi ; Takuwa, Yoh ; Takuwa, Noriko ; Yasuno, Hironobu ; Matsumoto, Sayaka ; Shibutani, Makoto ; Mitsumori, Kunitoshi
出版情報: Journal of Veterinary Medical Science.  70  pp.483-485,  2008-05-01.  日本獣医学会
URL: http://hdl.handle.net/2297/10947
概要: 金沢大学医薬保健研究域医学系<br />We report a case of mixed epithelial and stromal tumor of the kidney (MESTK) in a 32-week-old heterozygous sphingosine 1-phosphate-2 (S1P2) receptor deficient female mouse. A white solid mass replacing the left kidney was observed at the left retroperitoneal wall. Histologically, the tumor mass consisted of dimorphic cellular components of epithelial and stromal cells. Epithelial cells formed various sized irregular-shaped tubular structures resembling renal tubules surrounded by stromal cells. Immunohistochemically, epithelial cells were positive for cytokeratin, while stromal cells showed positive immunoreactivity with α-smooth muscle actin as well as vimentin. Based on the morphological and immunohistochemical findings, this tumor was diagnosed as a MESTK. 続きを見る
9.

論文

論文
Takuwa, Yoh ; Okamoto, Yasuo ; Yoshioka, Kazuaki ; Takuwa, Noriko
出版情報: BBA - Molecular and Cell Biology of Lipids.  781  pp.483-488,  2008-09-01.  Elsevier
URL: http://hdl.handle.net/2297/11734
概要: 金沢大学医薬保健研究域医学系<br />The plasma lysophospholipid mediator sphingosine-1-phosphate (S1P) is produced exclusively by sphingosine kinase (SPHK) 1 and SPHK2 in vivo, and plays diverse biological and pathophysiological roles by acting largely through three members of the G protein-coupled S1P receptors, S1P1, S1P2 and S1P3. S1P1 expressed on endothelial cells mediates embryonic vascular maturation and maintains vascular integrity by contributing to eNOS activation, inhibiting vascular permeability and inducing endothelial cell chemotaxis via Gi-coupled mechanisms. By contrast, S1P2, is expressed in high levels on vascular smooth muscle cells (VSMCs) and certain types of tumor cells, inhibiting Rac and cell migration via a G12/13-and Rho-dependent mechanism. In rat neointimal VSMCs, S1P1 is upregulated to mediate local production of platelet-derived growth factor, which is a key player in vascular remodeling. S1P3 expressed on endothelial cells also mediates chemotaxis toward S1P and vasorelaxation via NO production in certain vascular bed, playing protective roles for vascular integrity. S1P3 expressed on VSMCs and cardiac sinoatrial node cells mediates vasopressor and negative chronotropic effect, respectively. In addition, S1P3, together with S1P2 and SPHK1, is suggested to play a protective role against acute myocardial ischemia. However, our recent work indicates that overexpressed SPHK1 is involved in cardiomyocyte degeneration and fibrosis in vivo, in part through S1P activation of the S1P3 signaling. We also demonstrated that exogenously administered S1P accelerates neovascularization and blood flow recovery in ischemic limbs, suggesting its usefulness for angiogenic therapy. These results provide evidence for S1P receptor subtype-specific pharmacological intervention as a novel therapeutic approach to cardiovascular diseases and cancer. © 2008 Elsevier B.V. All rights reserved. 続きを見る
10.

論文

論文
Du, Wa ; Takuwa, Noriko ; Yoshioka, Kazuaki ; Okamoto, Yasuo ; Gonda, Koichi ; Sugihara, Kazushi ; Fukamizu, Akiyoshi ; Asano, Masahide ; Takuwa, Yoh
出版情報: Cancer Research.  70  pp.772-781,  2010-01-15.  American Association for Cancer Research
URL: http://hdl.handle.net/2297/21765
概要: 金沢大学医薬保健研究域医学系<br />Sphingosine-1-phosphate (S1P) has been implicated in tumor angiogenesis by acting through the Gi-coupled chemotactic receptor S1P1. Here, we report that the distinct receptor S1P2 is responsible for mediating the G12/13/Rho-dependent inhibitory effects of S1P on Akt, Rac, and cell migration, thereby negatively regulating tumor angiogenesis and tumor growth. By using S1P2LacZ/+ mice, we found that S1P2 was expressed in both tumor and normal blood vessels in many organs, in both endothelial cells (EC) and vascular smooth muscle cells, as well as in tumor-associated, CD11b-positive bone marrow-derived cells (BMDC). Lewis lung carcinoma or B16 melanoma cells implanted in S1P2-deficient (S1P2-/-) mice displayed accelerated tumor growth and angiogenesis with enhanced association of vascular smooth muscle cells and pericytes. S1P2-/- ECs exhibited enhanced Rac activity, Akt phosphorylation, cell migration, proliferation, and tube formation in vitro. Coinjection of S1P2-/- ECs and tumor cells into wild-type mice also produced a relative enhancement of tumor growth and angiogenesis in vivo. S1P2-/- mice were also more efficient at recruiting CD11b-positive BMDCs into tumors compared with wild-type siblings. Bone marrow chimera experiments revealed that S1P2 acted in BMDCs to promote tumor growth and angiogenesis. Our results indicate that, in contrast to endothelial S1P1, which stimulates tumor angiogenesis, S1P 2 on ECs and BMDCs mediates a potent inhibition of tumor angiogenesis, suggesting a novel therapeutic tactic for anticancer treatment. ©2010 AACR. 続きを見る