1.

図書

図書
成田耕造著
出版情報: 東京 : 東京化学同人, 1963.12
シリーズ名: 現代化学シリーズ ; 22
所蔵情報: loading…
2.

図書

図書
水島昭二編
出版情報: 東京 : 東京化学同人, 1987.6
シリーズ名: 現代化学増刊 ; 10
所蔵情報: loading…
3.

図書

図書
浜口浩三著
出版情報: 東京 : 共立出版, 1967.7
所蔵情報: loading…
4.

図書

図書
成田耕造著
出版情報: 東京 : 東京化学同人, 1968.7
シリーズ名: 現代化学シリーズ ; 22
所蔵情報: loading…
5.

論文

論文
柴田, 幹大 ; Shibata, Mikihiro
出版情報: 令和1(2019)年度 科学研究費補助金 挑戦的研究(萌芽) 研究成果報告書 = 2019 Fiscal Year Final Research Report.  2018-06-29 – 2020-03-31  pp.9p.-,  2020-05-29. 
URL: http://hdl.handle.net/2297/00059123
概要: 金沢大学ナノ生命科学研究所<br />本研究は、生体分子のナノ動態を撮影できる高速原子間力顕微鏡(高速AFM)と、単粒子解析法やディープラーニングによる画像解析を融合し、タンパク質部位の揺らぎ・構造変化を定量化できる画像解析システムの構築を 目指した。具体的には、高速AFM動画にMotionCor2を適用し、サブナノメートルの精度で約200枚のAFM画像をドリフト補正することに成功し、その積算画像を得た。積算画像では、タンパク質の動きの少ない部位は空間分解能が向上する一方、揺らぎの大きな部位は分解能が下がり、これを利用してタンパク質内のどの部位が、どの程度の揺らぎを持つのかを定量化することが可能となった。<br />High-speed atomic force microscopy (HS-AFM) is a unique technique to capture a nano-dynamics of biomolecules under the near physiological conditions. The purpose of this study is to build the image analysis which is capable to quantify fluctuation and structural changes of proteins by combining with single-particle analysis and deep learning. Specifically, we applied MotionCor2 to HS-AFM movies of proteins. As a result, we succeeded in drift-correcting about 200 AFM images with a sub-nanometer accuracy and obtained the integrated image. In the integrated image, the spatial resolution is improved in the part where the protein has a little fluctuation, while the resolution is decreased in the part where the fluctuation is large. Thus, this new combined method allows us to quantify a fluctuation of proteins.<br />研究課題/領域番号:18K19287, 研究期間(年度):2018-06-29 – 2020-03-31<br />出典:「高速原子間力顕微鏡と高度画像解析の融合による近原子分解能AFM画像への挑戦」研究成果報告書 課題番号18K19287(KAKEN:科学研究費助成事業データベース(国立情報学研究所))(https://kaken.nii.ac.jp/ja/report/KAKENHI-PROJECT-18K19287/18K19287seika/)を加工して作成 続きを見る
6.

論文

論文
柴田 , 幹大 ; Shibata, Mikihiro
出版情報: 平成29(2017)年度 科学研究費補助金 若手研究(B)研究成果報告書 = 2017 Fiscal Year Final Research Report.  2016-04-01 – 2018-03-31  pp.4p.-,  2018-05-16. 
URL: http://hdl.handle.net/2297/00059256
概要: 金沢大学ナノ生命科学研究所<br />CaMKIIは脳の神経細胞に存在し、記憶の形成に重要な役割を果たす。CaMKIIは12量体を形成し、Ca2+の高頻度刺激を積算(記憶)することができるため、多量体構造の中に“記憶の分子メカニズム”が隠さ れていると考えられてきたが、その詳細は不明であった。本研究は、CaMKIIに高速原子間力顕微鏡(高速AFM)を適用し、CaMKIIのハブドメインが信号を積算するために強力な分子集合能力を持つこと、キナーゼドメインが12量体構造を制御すること、さらに、2つを繋ぐリンカー部分の柔軟性が、CaMKIIの活性化に重要であることを実験的に示し、記憶の分子メカニズムの一端を明らかにした。<br />CaMKII is enriched in neurons and plays an important role for learning and memory. Because CaMKII forms 12-mer holoenzyme that responds to the frequency of the activating signal of Ca2+, an assembly of CaMKII oligomers could be a key element of a molecular mechanism of learning and memory. However, there is no direct evidence that a formation of CaMKII oligomer relates to a memory mechanism.HS-AFM movies of CaMKII showed solid structures and fluctuated globular structures. By using truncated CaMKII, solid and globular structures were assigned to hub and kinase domains, respectively. Interestingly, 14-mer ring structures were observed in the truncated CaMKII, while 12-mer structures were observed in full-length CaMKII. These results suggest that hub domain has a strong assemble ability, while kinase domain regulates an oligomeric structure of CaMKII. Furthermore, HS-AFM revealed that a flexibility of a linker region is important for the activation of CaMKII.<br />研究課題/領域番号:16K18523, 研究期間(年度):2016-04-01 – 2018-03-31 続きを見る
7.

論文

論文
内橋, 貴之 ; Uchihashi, Takayuki
出版情報: 平成27(2015)年度 科学研究費補助金 新学術領域研究(研究領域提案型) 研究実績の概要 = 2015 Research Project Summary.  2014-04-01 – 2016-03-31  pp.2p.-,  2018-03-28. 
URL: http://hdl.handle.net/2297/00059913
概要: 金沢大学理工研究域数物科学系<br />昨年度までに開発した高速AFMインタラクティブモードの応用研究を進めた。具体的には、インタラクティブモードによりクラミドモナス鞭毛の軸糸微小管を部分破壊し、それによる微小管の崩壊を観察することで、微小 管内部の結合タンパク質が微小管の構造を安定化していることを明らかにした。また、超分子ポリマーの部分切断と再重合過程や酸化還元酵素であるペルオキシレドキシンの高分子複合体の構造解析に関する研究にも応用した。これらにより、インタラクティブモード高速AFMがタンパク質の分子動態の操作だけでなく、分子複合体の部分破壊を利用した堅さ計測や構造解析に利用できることがわかった。分子動態の観察によって分子の柔らかさと機能の関係を明らかにすべく、分子シャペロンClpBのイメージングを行った。ATPの結合と加水分解に依存したClpB六量体リング構造の柔軟な形状変化が観察された。様々な変異体解析により、六量体リング構造の切断と回復などのダイナミックな構造変化がClpBシャペロン機能に重要であることを明らかにした。<br />研究課題/領域番号:26102515, 研究期間(年度):2014-04-01 – 2016-03-31 続きを見る
8.

論文

論文
内橋, 貴之 ; Uchihashi, Takayuki
出版情報: 平成27(2015)年度 科学研究費補助金 新学術領域研究(研究領域提案型) 研究実績の概要 = 2015 Research Project Summary.  2014-04-01 – 2016-03-31  pp.2p.-,  2018-03-28. 
URL: http://hdl.handle.net/2297/00059940
概要: 金沢大学理工研究域数物科学系<br />昨年度までに開発した高速AFMインタラクティブモードの応用研究を進めた。具体的には、インタラクティブモードによりクラミドモナス鞭毛の軸糸微小管を部分破壊し、それによる微小管の崩壊を観察することで、微小 管内部の結合タンパク質が微小管の構造を安定化していることを明らかにした。また、超分子ポリマーの部分切断と再重合過程や酸化還元酵素であるペルオキシレドキシンの高分子複合体の構造解析に関する研究にも応用した。これらにより、インタラクティブモード高速AFMがタンパク質の分子動態の操作だけでなく、分子複合体の部分破壊を利用した堅さ計測や構造解析に利用できることがわかった。分子動態の観察によって分子の柔らかさと機能の関係を明らかにすべく、分子シャペロンClpBのイメージングを行った。ATPの結合と加水分解に依存したClpB六量体リング構造の柔軟な形状変化が観察された。様々な変異体解析により、六量体リング構造の切断と回復などのダイナミックな構造変化がClpBシャペロン機能に重要であることを明らかにした。<br />研究課題/領域番号:26104514, 研究期間(年度):2014-04-01 – 2016-03-31 続きを見る
9.

論文

論文
長尾, 秀実 ; Nagao, Hidemi
出版情報: 平成21(2009)年度 科学研究費補助金 特定領域研究 研究実績の概要 = 2009 Research Project Summary.  2008 – 2009  pp.2p.-,  2018-03-28. 
URL: http://hdl.handle.net/2297/00060141
概要: 金沢大学理工学域数物科学系<br />X線構造解析により酸化型アズリン(Az)と還元型シトクロムc551(Cyt)の構造が知られている。各立体構造にプロトンを付加し、各活性部位付近の必要パラメータを各活性部位類似のクラスターモデルを用いて密 度汎関数法(UB3LYP/6-31G^<**>/ESP)により見積もった。これらの立体構造を用いてAz_<ox>-Cyt_<red>複合体構造最適化をZDOCKプログラムパッケージおよび独自開発プログラムで予測した。これらの座標データから3つの複合体モデルを作成した。(1)水素結合を含む静電相互作用エネルギーを最小にしたモデル。(2)疎水性相互作用エネルギー最小にした構造。(3)活性部位の電荷分布をAz_<red>-Cyt_<ox>型にしたモデル。これら3通りのモデルよるタンパク質複合体の溶液内での安定性を溶媒和自由エネルギー計算に評価した。計算した構造エネルギーに溶媒和自由エネルギー,エントロピーを加えることで新しく定義したタンパク質の自由エネルギーの計算結果は活性部位の電荷分布をAz_<red>-Cyt_<ox>型にしたモデルが最も低い値を示した。結合自由エネルギーの評価には、複合体を形成する前のAz_<ox>単体の構造とCyt_<red>単体の構造における溶媒和エネルギー,構造エネルギー,エントロピーを評価し、タンパク質複合体の自由エネルギーとの差から評価した。Az_<ox>, Cyt_<red>単体と複合体の自由エネルギーの差は-107kcal/mol、構造エネルギーの差は-47kcal/mol、エントロピーの差は31kcal/molとなった。これらの結果から結合自由エネルギーの値は-123kcal/molであることが示され、タンパク質複合体の結合自由エネルギーには溶媒和自由エネルギーが大きく寄与していることがこれらの計算結果から示された。<br />研究課題/領域番号:20038018, 研究期間(年度):2008 – 2009 続きを見る
10.

論文

論文
長尾, 秀実 ; Nagao, Hidemi
出版情報: 平成19(2007)年度 科学研究費補助金 特定領域研究 研究実績の概要 = 2007 Research Project Summary.  2007  pp.1p.-,  2018-03-28. 
URL: http://hdl.handle.net/2297/00060164
概要: 金沢大学自然科学研究科<br />X線構造解析により知られている酸化型アズリン(Az_<ox>)と還元型シトクロム(Cyt_<red>)の立体構造を用いてAz_<ox>-Cyt_<red>複合体構造最適化をZDOCKプログラムパッケージおよ び独自開発プログラムで予測した。Amber力場と活性部位付近の量子化学計算で見積もられた力場を用い、5854個のTIP5P水分子を加えた系を300K、NVTアンサンブル条件下でシミュレーションした。シミュレーションによりAz_<ox>-Cyt_<red>複合体安定構造を見いだした。ドッキングサイトは二つの部分に分けられ、いずれの部分もターン構造中にあり、水素結合で強く結合しAz_<ox>-Cyt_<red>複合体を形成していることがわかった。本研究により複合体に関わる水素結合部位が明確に示された。次にAz_<ox>-Cyt_<red>複合体ダイナミックスを考察した。会合前後でCyt_<red>タンパク質振動が大きく変わっていることが見いだせた。またドッキングサイトではAz_<ox>とCyt_<red>との協調的振動モードが現れ、タンパク質構造変化のみならず、振動主成分変化が観測された。還元型アズリン(Az_<red>)は空気中酸素により酸化され結晶化が容易ではない。Az_<red>-Cyt_<ox>複合体構造決定もまた、空気中酸素による複合体酸化が起こるため現在のところ実験で決定するのは容易ではない。そこでAz_<red>-Cyt_<ox>複合体における各活性部位付近の電荷分布を用いた構造緩和シミュレーションを行った。Amber力場と活性部位付近の量子化学計算で見積もられた力場を用い、6204個のTIP5P水分子を加えた系を300K、NVTアンサンブル条件下でシミュレーションした。構造緩和後、複合体安定構造を見いだした。Az_<red>-Cyt_<ox>複合体ドッキングサイトはAz_<ox>-Cyt_<red>複合体のものとほぼ一致していることを見いだした。またDynamical Cross Correlation MapによりAz_<red>のαヘリックスとCyt_<ox>のほぼ全体が強く動的相関を持つことが見いだされた。一般にタンパク質ターン構造部分はB因子(RMSF)が最も大きく、次にαヘリックス部分が大きい。本研究結果からターン構造部分にドッキング部位があり、AzとCytのドッキングによりターン構造部分の運動が束縛される。そしてαヘリックス部分へのエネルギー移動が示唆される。<br />研究課題/領域番号:19029014, 研究期間(年度):2007<br />出典:「タンパク質複合体構造とダイナミックスの理論的研究」研究成果報告書 課題番号19029014(KAKEN:科学研究費助成事業データベース(国立情報学研究所))(https://kaken.nii.ac.jp/ja/grant/KAKENHI-PROJECT-19029014/)を加工して作成 続きを見る