1.

論文

論文
Zhao, Juanjuan ; Okamoto, Yasuo ; Asano, Yuya ; Ishimaru, Kazuhiro ; Aki, Sho ; Yoshioka, Kazuaki ; Takuwa, Noriko ; Wada, Takashi ; Inagaki, Yutaka ; Takahashi, Chiaki ; Nishiuchi, Takumi ; Takuwa, Yoh ; 安藝, 翔 ; 吉岡, 和晃 ; 多久和, 典子 ; 和田, 隆志 ; 髙橋, 智聡 ; 西内, 巧 ; 多久和, 陽
出版情報: PLoS ONE.  13  pp.e0197604-,  2018-05-21.  Public Library of Science
URL: http://hdl.handle.net/2297/00053881
概要: 金沢大学医薬保健研究域医学系<br />Idiopathic pulmonary fibrosis is a devastating disease with poor prognosis. The pathogenic role of t he lysophospholipid mediator sphingosine-1-phosphate and its receptor S1PR2 in lung fibrosis is unknown. We show here that genetic deletion of S1pr2 strikingly attenuated lung fibrosis induced by repeated injections of bleomycin in mice. We observed by using S1pr2 LacZ/+ mice that S1PR2 was expressed in alveolar macrophages, vascular endothelial cells and alveolar epithelial cells in the lung and that S1PR2-expressing cells accumulated in the fibrotic legions. Bone marrow chimera experiments suggested that S1PR2 in bone marrow–derived cells contributes to the development of lung fibrosis. Depletion of macrophages greatly attenuated lung fibrosis. Bleomycin administration stimulated the mRNA expression of the profibrotic cytokines IL-13 and IL-4 and the M2 markers including arginase 1, Fizz1/Retnla, Ccl17 and Ccl24 in cells collected from broncho-alveolar lavage fluids (BALF), and S1pr2 deletion markedly diminished the stimulated expression of these genes. BALF cells from bleomycin–administered wild-type mice showed a marked increase in phosphorylation of STAT6, a transcription factor which is activated downstream of IL-13, compared with saline–administered wild-type mice. Interestingly, in bleomycin–adminis-tered S1pr2 -/- mice, STAT6 phosphorylation in BALF cells was substantially diminished compared with wild-type mice. Finally, pharmacological S1PR2 blockade in S1pr2 +/+ mice alleviated bleomycin–induced lung fibrosis. Thus, S1PR2 facilitates lung fibrosis through the mechanisms involving augmentation of IL-13 expression and its signaling in BALF cells, and represents a novel target for treating lung fibrosis. © 2018 Zhao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 続きを見る
2.

論文

論文
Shamma, Awad ; Suzuki, Misa ; Hayashi, Naoyuki ; Kobayashi, Masahiko ; Sasaki, Nobunari ; Nishiuchi, Takumi ; Doki, Yuichiro ; Okamoto, Takahiro ; Kohno, Susumu ; Muranaka, Hayato ; Kitajima, Shunsuke ; Yamamoto, Ken-ichi ; Takahashi, Chiaki
出版情報: Molecular biology of the cell.  33  pp.3113-3124,  2013-08-01.  American Society for Cell Biology
URL: http://hdl.handle.net/2297/35211
概要: The retinoblastoma tumor suppressor gene (RB) product has been implicated in epigenetic control of gene expression owing to its ability to physically bind to many chromatin modifiers. However, the biological and clinical significance of this activity was not well elucidated. To address this, we performed genetic and epigenetic analyses in an Rb-deficient mouse thyroid C cell tumor model. Here we report that the genetic interaction of Rb and ATM regulates DNMT1 protein stability and hence controls the DNA methylation status in the promoters of at least the Ink4a, Shc2, FoxO6, and Noggin genes. Furthermore, we demonstrate that inactivation of pRB promotes Tip60 (acetyltransferase)-dependent ATM activation; allows activated ATM to physically bind to DNMT1, forming a complex with Tip60 and UHRF1 (E3 ligase); and consequently accelerates DNMT1 ubiquitination driven by Tip60-dependent acetylation. Our results indicate that inactivation of the pRB pathway in coordination with aberration in the DNA damage response deregulates DNMT1 stability, leading to an abnormal DNA methylation pattern and malignant progression. 続きを見る
3.

論文

論文
Salah, Mohammed ; Nishimoto, Yuuki ; Kohno, Susumu ; Kondoh, Atsushi ; Kitajima, Shunsuke ; Muranaka, Hayato ; Nishiuchi, Takumi ; Ibrahim, Ahmed ; Yoshida, Akiyo ; Takahashi, Chiaki
出版情報: Molecular Carcinogenesis.  55  pp.1974-1989,  2016-12-01.  John Wiley and Sons
URL: http://hdl.handle.net/2297/46761
概要: Mutations in RB and PTEN are linked to castration resistance and poor prognosis in prostate cancer. Identification of ge nes that are regulated by these tumor suppressors in a context that recapitulates cancer progression may be beneficial for discovering novel therapeutic targets. Although various genetically engineered mice thus far provided tumor models with various pathological stages, they are not ideal for detecting dynamic changes in gene transcription. Additionally, it is difficult to achieve an effect specific to tumor progression via gain of functions of these genes. In this study, we developed an in vitro model to help identify RB- and PTEN-loss signatures during the malignant progression of prostate cancers. Trp53−/−; Rbf/f, Trp53−/−; Ptenf/f, and Trp53−/−; Rbf/f; Ptenf/f prostate epithelial cells were infected with AD-LacZ or AD-Cre. We found that deletion of Rb, Pten or both stimulated prostasphere formation and tumor development in immune-compromised mice. The GO analysis of genes affected by the deletion of Rb or Pten in Trp53−/− prostate epithelial cells identified a number of genes encoding cytokines, chemokines and extracellular matrix remodeling factors, but only few genes related to cell cycle progression. Two genes (Il-6 and Lox) were further analyzed. Blockade of Il-6 signaling and depletion of Lox significantly attenuated prostasphere formation in 3D culture, and in the case of IL-6, strongly suppressed tumor growth in vivo. These findings suggest that our in vitro model may be instrumental in identifying novel therapeutic targets of prostate cancer progression, and further underscore IL-6 and LOX as promising therapeutic targets. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.<br />Embargo Period 12 months 続きを見る
4.

論文

論文
Yoshida, Akiyo ; Kitajima, Shunsuke ; Li, Fengkai ; Cheng, Chaoyang ; Takegami, Yujiro ; Kohno, Susumu ; Wan, Yuan Song ; Hayashi, Naoyuki ; Muranaka, Hayato ; Nishimoto, Yuuki ; Nagatani, Naoko ; Nishiuchi, Takumi ; Thai, Tran C ; Suzuki, Sawako ; Nakao, Shinji ; Tanaka, Tomoaki ; Hirose, Osamu ; Barbie, David A. ; Takahashi, Chiaki
出版情報: Oncotarget.  8  pp.13872-13885,  2017-01-01.  Impact Journals LLC
URL: http://hdl.handle.net/2297/47088
概要: We established an in vitro cell culture system to determine novel activities of the retinoblastoma (Rb) protein during tumor progression. Rb depletion in p53-null mouse-derived soft tissue sarcoma cells induced a spherogenic phenotype. Cells retrieved from Rb-depleted spheres exhibited slower proliferation and less efficient BrdU incorporation, however, much higher spherogenic activity and aggressive behavior. We discovered six miRNAs, including mmu-miR-18a, -25, -29b, -140, -337, and -1839, whose expression levels correlated tightly with the Rb status and spherogenic activity. Among these, mmu-miR-140 appeared to be positively controlled by Rb and to antagonize the effect of Rb depletion on spherogenesis and tumorigenesis. Furthermore, among genes potentially targeted by mmu-miR-140, Il-6 was upregulated by Rb depletion and downregulated by mmu-mir-140 overexpression. Altogether, we demonstrate the possibility that mmu-mir-140 mediates the Rb function to downregulate Il-6 by targeting its 3'-untranslated region. Finally, we detected the same relationship among RB, hsa-miR-140 and IL-6 in a human breast cancer cell line MCF-7. Because IL-6 is a critical modulator of malignant features of cancer cells and the RB pathway is impaired in the majority of cancers, hsa-miR-140 might be a promising therapeutic tool that disrupts linkage between tumor suppressor inactivation and pro-inflammatory cytokine response.<br />Supplementary Table1 and Supplementary Table2: We offer the table data with an Excel file 続きを見る