1.

論文

論文
Rahman M., Mamunur ; Rahman M., Azizur ; Maki, Teruya ; Nishiuchi, Takumi ; Asano, T. ; Hasegawa, Hiroshi
出版情報: Chemosphere.  pp.213-219,  2014-01-01.  Elsevier
URL: http://hdl.handle.net/2297/36287
概要: Iron (Fe) is one of the vital limiting factors for phytoplankton in vast regions of the contemporary oceans, notably the high nutrient low chlorophyll regions. Therefore, it is apparent to be acquainted with the Fe uptake strategy of marine phytoplankton under Fe-limited condition. In the present study, marine phytoplankton Prymnesium parvum was grown under Fe-deplete (0.0025 μM) and Fe-rich (0.05 μM) conditions, and proteomic responses of the organism to Fe conditions were compared. In sodium dodecyl sulfate (SDS) gel electrophoresis, 7 proteins (16, 18, 32, 34, 75, 82, and 116 kDa) were highly expressed under Fe-deplete condition, while one protein (23 kDa) was highly expressed under Fe-rich condition. These proteins were subjected to 2-dimensional gel electrophoresis (2-D DIGE) to differentiate individual proteins, and were identified by matrix-assisted laser desorption-ionization-time of flight-mass spectrometer (MALDI-TOF-MS) analysis. The results showed that under Fe-deplete condition P. parvum increases the biosynthesis of ATP binding cassette (ABC) transporters, flagellar associated protein (FAP), and Phosphoribosylaminoimidazole-succinocarboxamide synthase. These proteins are assumed to be involved in a number of cellular biochemical processes that facilitate Fe acquisition in phytoplankton. Under Fe-deplete condition, P. parvum increases the synthesis of ribulose biphosphate carboxylase (RuBisCo), malate dehydrogenase, and two Fe-independent oxidative stress response proteins, manganese superoxide dismutase (MnSOD) and Serine threonine kinase (STK). Thus, marine phytoplankton may change their Fe acquisition strategy by altering the biosynthesis of several proteins in order to cope with Fe-limitation. © 2013 Elsevier Ltd. All rights reserved. 続きを見る
2.

論文

論文
Mamunur, Rahman M. ; Azizur, Rahman M. ; Maki, Teruya ; Nishiuchi, Takumi ; Asano, Tomoya ; Hasegawa, Hiroshi
出版情報: Chemosphere.  95  pp.213-219,  2014-01-01.  Elsevier
URL: http://hdl.handle.net/2297/36780
概要: Iron (Fe) is one of the vital limiting factors for phytoplankton in vast regions of the contemporary oceans, notably the high nutrient low chlorophyll regions. Therefore, it is apparent to be acquainted with the Fe uptake strategy of marine phytoplankton under Fe-limited condition. In the present study, marine phytoplankton Prymnesium parvum was grown under Fe-deplete (0.0025 μM) and Fe-rich (0.05 μM) conditions, and proteomic responses of the organism to Fe conditions were compared. In sodium dodecyl sulfate (SDS) gel electrophoresis, 7 proteins (16, 18, 32, 34, 75, 82, and 116. kDa) were highly expressed under Fe-deplete condition, while one protein (23. kDa) was highly expressed under Fe-rich condition. These proteins were subjected to 2-dimensional gel electrophoresis (2-D DIGE) to differentiate individual proteins, and were identified by matrix-assisted laser desorption-ionization-time of flight-mass spectrometer (MALDI-TOF-MS) analysis. The results showed that under Fe-deplete condition P. parvum increases the biosynthesis of ATP binding cassette (ABC) transporters, flagellar associated protein (FAP), and Phosphoribosylaminoimidazole-succinocarboxamide synthase. These proteins are assumed to be involved in a number of cellular biochemical processes that facilitate Fe acquisition in phytoplankton. Under Fe-deplete condition, P. parvum increases the synthesis of ribulose biphosphate carboxylase (RuBisCo), malate dehydrogenase, and two Fe-independent oxidative stress response proteins, manganese superoxide dismutase (MnSOD) and Serine threonine kinase (STK). Thus, marine phytoplankton may change their Fe acquisition strategy by altering the biosynthesis of several proteins in order to cope with Fe-limitation. © 2013 Elsevier Ltd. 続きを見る